AES Semigas

IQE

19 October 2021

Porotech creates first native-red InGaN micro-display

Porotech (a spin-out from the Cambridge Centre for Gallium Nitride at the UK’s University of Cambridge that has developed porous GaN material) has created what is reckoned to be the first micro-display based on native-red indium gallium nitride (InGaN) – with an active area of 0.55-inches diagonally and a resolution of 960x540.

In the past, it has only been possible to produce blue and green micro-displays using GaN-based light-emitting devices (LEDs) – with red emission relying on devices based on aluminum indium gallium phosphide (AlInGaP). But AllnGaP struggles at the small pixel sizes required by augmented reality (AR) glasses, so there is a drastic efficiency drop as the device size decreases. Also, to produce a full-color display, the light from different panels has had to be combined.

Porotech’s native-red InGaN micro-LED means that, for the first time, all three light-emitting elements can be produced using a single toolchain, while removing the complexities of mixing devices based on different material structures.

“AR technology is set to be a game changer, and micro-LEDs are particularly vital for the advancement of AR interfaces,” says CEO & co-founder Dr Tongtong Zhu. “In traditional liquid-crystal displays (LCDs) the image is a result of both modulating and filtering the light from a white back-lighting module. As such, most of the light created by the panel is wasted by the very working principle of the display. In addition to this inefficiency, the various filtering, diffusion and modulation stages of the LCD display impose limits on how lightweight the final display can be,” he adds.

“Emissive display technologies, on the other hand, only produce the light that is required of them – allowing for the final devices to potentially achieve much higher efficiencies,” Zhu continues. “Self-emitting displays based on inorganic semiconductors can also be produced in monolithic fashion, allowing them to be more easily scaled down than traditional LCD or organic semiconductor displays – allowing for smaller, lighter, brighter and reliable high-resolution displays to be made.”

The stumbling block so far has been the need to combine light-emitting devices based on different material structures. One solution has been the use of prisms – but this is a relatively large and bulky approach. Stacking emitting layers on top of each other is another option but this results in the light emitted by each color coming from a different depth in the display – complicating the design of the optics and requiring very high precision in both the pitch of the LEDs in each display as well as the alignment of the various layers in the structure. Combining LEDs from different materials onto one panel horizontally is an alternative approach – but this requires very high precision in placing each individual LED element and other optical components.

“Porotech’s new class of porous GaN semiconductor material is now redefining what is possible – enabling the creation of efficient and bright native-red InGaN micro-LEDs and micro-displays,” says Zhu. “This has been the missing piece of the puzzle until now. As well as reducing costs, the bright native red can push the maximum achievable wavelength to 640nm and beyond – a first for micro-display visualization,” he adds. “Our breakthrough is now set to accelerate the commercialization of AR glasses as well as heralding a new era of brighter, sharper, more vivid micro-displays for products such as smartphones and smartwatches.”

See related items:

Porotech appoints former Arm executive as chief commercial officer

Porotech teams with micro-LED panel firm Jade Bird Display

Porotech raises £3m to fund development of micro-LED production technique

Porotech launches first native red InGaN LED epiwafer for micro-LEDs

Porous GaN firm Porotech completes £1.5m seed round

Tags: The Cambridge Centre for Gallium Nitride

Visit: www.porotech.co.uk

RSS

PIC Summit Europe

Book This Space